Getting in the nose: Intranasal Fentanyl
Acknowledgements

Adopted for CAPHC’s Community of Practice for Pain

by:

Dr. Melissa Chan (Pediatric Emergency Physician, Stollery Children’s Hospital, Edmonton, Alberta)

and

Dr. Samina Ali (Associate Professor, University of Alberta, Edmonton, Alberta)
Objectives

• To review technique and physiology of intranasal medication delivery

• To review medications which can be used via IN route

• To explore novel IN initiatives and treatments
Nasal Anatomy

• The anterior nasal cavity, known as the **nasal vestibule**, is the main site of intranasal drug

• Good absorption due to:
 – relatively large surface area
 – covered by squamous and transition epithelial cells

• Bordering this area is respiratory epithelium:
 – poor drug absorption
 – moves drug away from nose into the pharynx
Nasal Anatomy
First Pass Metabolism

- Oral meds may sit in stomach for 30-40 min
- All blood from intestines passes through hepatic circulation before passing to body
- 90% of oral meds are metabolized here
First Pass Metabolism

- IN medications absorbed from the nose bypasses first pass hepatic metabolism
- Blood from nose drains directly into superior vena cava
- In theory may also be able to cross olfactory nerve pathway directly into CSF – even in apneic patient
Administration using Dropper

- Medication can be delivered into the nose using a dropper, and simply dropping into the nose
- The best position would be for the child lying
- This method is limited because:
 - Much of the medication ends up in the oropharynx
 - Takes a long time
 - Not well tolerated by children
Administration using Atomizer

– Better disposition is achieved with an atomizer

– Best position:
 • Bed should be up about 45 degrees and atomizer should be pointed slightly up and outward towards the top of the ear on the same side
 • If using atomizer don’t forget to account for dead space (usually about 0.1 ml)
 – i.e. If dose required =0.5mL would need to draw 0.6 mL to allow for the 0.1 mL that remains in the atomizer
Administration

• Absorption is affected by:
 – Location – if atomizer is pointed in wrong direction can result in run off into the posterior pharynx
 – Surface area of the vestibule - Volumes of 0.3ml or less are best tolerated but can take up to 0.5ml/nare
 – Medical conditions –
 • Cystic fibrosis which may affect ciliary function
 • Nasal polyps decrease surface area for absorption
 • Rhinitis, nasal secretions, epistaxis can decreased drug contact
Best Medications for IN Use

- Low molecular weight
- Highly lipophilic
- No net charge at physiologic pH (4.5-6.5)
Uses for IN medications

• Sedation and analgesia
• Vaccine delivery
• Treatment of diabetes insipidus, rhinosinusitis, seizures, and migraines
• Delivery of opioid antagonists
• Delivery of glucagon
FENTANYL
Fentanyl

- Potent and highly selective opioid agonist that works primarily at the mu receptor
- Primarily metabolized in the liver
- Rapid onset and short duration of action
- No inherent anxiolytic or amnestic properties and sedation does not occur at low doses
Fentanyl

- Cochrane Review from 2015
- 3 studies included:
 - INF vs. IM morphine
 - INF vs. IV morphine
 - INF 300 mcg/mL vs. INF 50mcg/mL (used same dose 1.5mcg/kg in both groups)
Cochrane Review

• All methods of analgesia had pain reduction at 10 min post administration:
 – Greater pain reduction with INF vs IM morphine
 – No difference in pain reduction when compared to IV morphine

• Dose of INF for all studies: 1-1.5 mcg/kg

• Limitation: all studies done in children over 3 years
Fentanyl

• 2009 study looking at children 1-3 years
• 46 children included in study
• INF dose = 1.5 mcg/kg
Fentanyl

- INF results in clinically and statistically significant decrease in FLACC scores:
 - 93% of children 10 min post fentanyl (FLACC 8 to 2)
 - 98% of children 30 min post fentanyl (FLACC 8 to 0)
- Intranasal fentanyl delivery using a mucosal atomiser was well tolerated by all children
Intranasal Fentanyl for Pain Management in Children: A Systematic Review of the Literature

Shawna Mudd, DNP, PNP-BC

- Children 6 months – 18 years
- Dose 1-2 mcg/kg
- Better tolerated than IM morphine, effective for relieving pain and agitation
- Decreased need for IV insertion and may decrease time to analgesia
Clinical Pathways

- Often delays to pain medication in children
- IN fentanyl has shown to relieve pain 30min faster than IV morphine
- Retrospective chart review looking at:
 - Time to IN fentanyl vs morphine with pain pathway
 - LOS in ED
 - Pain reduction with both modalities
- Significant decrease in time to pain medication but did not affect length of stay, and effectiveness of pain management was the same.

Clinical Pathways

Time to Pain Medication

Length of Stay

FIGURE 1. Time to pain medication administration by form of pain medication. Circle represents mild outlier which lies beyond Q1 - 1.5*IQR or Q3 + 1.5*IQR but is not an extreme outlier. IQR is defined as Q3 - Q1, the height of the box.

FIGURE 2. Length of ED stay stratified by form of pain medication after excluding reductions and surgeries (n = 33). Asterisk represents extreme outlier which lies beyond Q1 - 3*IQR or Q3 + 3*IQR. Circle represents mild outlier which lies beyond Q1 - 1.5*IQR or Q3 + 1.5*IQR but is not an extreme outlier. IQR is defined as Q3 - Q1, the height of the box.

Take Away Points

- Intranasal fentanyl is an effective, safe and well-tolerated mode of analgesia for children aged 1–18 years with moderate to severe pain.
- Atomizer best method of delivery
- Dose 1 – 1.5 mcg/kg fentanyl IN
- Similar pain relief to IV morphine but without requiring IV access
- Use of INF decreases time to analgesia for children
- Not necessarily for repeated doses
- Best to start analgesic provision for moderate-severe pain